

Quadratic Equation:
$$a\chi^2 + b\chi + c = 0$$
, $d \neq 0$
Quadratic Sormula: $\chi = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
Discriminant! $b^2 - 4ac$
Proos os Quadratic Sormula:
 $a\chi^2 + b\chi + c = 0$; $a \neq 0$
Divide by a to make the Lead. Coef. 1
 $\frac{a}{a}\chi^2 + \frac{b}{a}\chi + \frac{c}{a} = 0 \Rightarrow \chi^2 + \frac{b}{a}\chi + \frac{c}{a} = 0$
Move the constant to the right hand side
 $\chi^2 + \frac{b}{a}\chi = -\frac{c}{a}$
Now make a persect-square for the
Left side
 $\frac{1}{a} \cdot \frac{b}{a} = \frac{b}{2a}$, $(\frac{b}{2a})^2 = \frac{b^2}{4a^2}$.
 $\chi^2 + \frac{b}{a}\chi + \frac{b^2}{4a^2} = \frac{b^2}{4a^2} - \frac{c}{a}$

$$\chi^{2} + \frac{b}{\alpha}\chi + \frac{b^{2}}{4\alpha^{2}} = \frac{b^{2}}{4\alpha^{2}} - \frac{c}{\alpha}$$

$$\left(\chi + \frac{b}{2\alpha}\right)^{2} = \frac{b^{2}}{4\alpha^{2}} - \frac{c \cdot 4\alpha}{\alpha \cdot 4\alpha}$$

$$\left(\chi + \frac{b}{2\alpha}\right)^{2} = \frac{b^{2}}{4\alpha^{2}} - \frac{4\alpha c}{4\alpha^{2}} \Rightarrow \left(\chi + \frac{b}{2\alpha}\right)^{2} - \frac{b^{2} - 4\alpha c}{4\alpha^{2}}$$
Now use the Square-Root Method
$$\chi + \frac{b}{2\alpha} = \pm \frac{\sqrt{b^{2} - 4\alpha c}}{\sqrt{4\alpha^{2}}} \qquad \chi = -\frac{b}{2\alpha} \pm \frac{\sqrt{b^{2} - 4\alpha c}}{2\alpha}$$
The Quadratic formula
$$\chi = -\frac{b \pm \sqrt{b^{2} - 4\alpha c}}{2\alpha}$$

Solve
$$(x + 1)(5x - 2) = 6$$
 by the quadratic
Sormula. Write in $0x^{2} + 5x + 1 = 0$ Form
 $5x^{2} - 2x + 5x - 2 - 6 = 0$
 $5x^{2} + 3x - 8 = 0$
 $a = 5, b = 3, c = -8$
 $b^{2} - 4ac = 3^{2} - 4(5)(-8) = 9 + 160 = 169$
 $x = \frac{-5 \pm \sqrt{b^{2} - 4ac}}{2a} = \frac{-3 \pm \sqrt{169}}{2(5)} = \frac{-3 \pm 13}{10}$
 $x = \frac{-3 \pm \sqrt{3}}{10} = \frac{10}{10} = 1$
 $x = \frac{-3 \pm \sqrt{3}}{10} = \frac{10}{10} = 1$
 $x = \frac{-3 - 13}{10} = \frac{-16}{10} = \frac{-8}{5}$

The Sum of squares of two cons. odd
integers is 34.
Find all such odd integers. has to be add.

$$\chi^{2} + (\chi + 2)^{2} = 34$$

 $\chi^{2} + (\chi^{2} + 4\chi + 4)^{2} = 34$
 $\chi^{2} + (\chi^{2} + 4\chi + 4)^{2} = 34$
 $\chi^{2} + (\chi^{2} + 4\chi + 4)^{2} = 34$
 $\chi^{2} + (\chi^{2} + 4\chi + 4)^{2} = 34$
 $\chi^{2} + (\chi^{2} + 4\chi + 4)^{2} = 34$
 $\chi^{2} + (\chi^{2} + 4\chi + 4)^{2} = 34$
 $\chi^{2} + (\chi^{2} + 4\chi + 4)^{2} = 34$
 $\chi^{2} + (\chi^{2} + 4\chi + 4)^{2} = 34$
 $\chi^{2} + (\chi^{2} + 4\chi + 4)^{2} = 34$
 $\chi^{2} + (\chi^{2} + 4\chi + 4)^{2} = 34$
 $\chi^{2} + (\chi^{2} + 4\chi + 4)^{2} = 34$
 $\chi^{2} + (\chi^{2} + 4\chi + 4)^{2} = 34$
 $\chi^{2} + (\chi^{2} + 4\chi + 4)^{2} = 34$
Let's solve this by
 $\chi^{2} + 2\chi + 1 = 15 + 1$
 $\chi^{2} + 2\chi + 1 = 15 + 1$
 $\chi^{2} + 2\chi + 1 = 15 + 1$
 $\chi^{2} + 2\chi + 1 = 15 + 1$
 $\chi^{2} + 2\chi + 1 = 15 + 1$
 $\chi^{2} + 1 = 15 + 1$
 $\chi^{2} - 1 + 4 = 3$
 $\chi = -1 - 4 = -5$
 $\chi = -5 - 3$
Final Ans: 3 45 or -54-3

The area of rectangular room is
$$36 \text{ m}^2$$
.
The length is I m longer than twice
its width.
Find its dimensions.
 $A = 36$ 4 m by 9 m 2 m
 $A = 36$ 4 m by 9 m 2 m
 $A = 36$ 4 m by 9 m 2 m
 $A = 36$ 4 m by 9 m
 $A = 36$ 4 m 9 m
 2 m 2 m 2 m
 2 m
 2 m 2 m
 2 m 2 m
 2 m 2 m
 2 m 2 m
 2 m 2 m
 2 m 2 m
 2 m 2 m
 2 m 2 m
 2 m
 2 m 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m
 2 m

Class QZ 9
Solve
$$2x^{2} + 5 = -2x$$
 by Using
the quadratic Sormula.
 $2x^{2} + 5 = -2x = 2x^{2} + 5 + 2x = 0 = 2x^{2} + 2x + 5 = 0$
 $Q = 2, b = 2, c = 5$ $b^{2} - 4ac = 2^{2} - 4(2)(5) = -36$
 $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} = \frac{-2 \pm \sqrt{-36}}{2(2)} = \frac{-2 \pm 6i}{4} = \frac{-2}{4} \pm \frac{6}{4}i$
 $x = \frac{-1}{2} \pm \frac{3}{2}i$ $x = \frac{-1}{2} \pm \frac{3}{2}ij$